Noncommutativity of Quantum Observables

B. Rumbos 1

Received February 25, 1993

Given a quantum logic (L, \mathcal{S}), a measure of noncommutativity for the elements of L was introduced by Román and Rumbos. For the special case when L is the lattice of closed subspaces of a Hilbert space, the noncommutativity between two atoms of L was related to the transition probability between their corresponding pure states. Here we generalize this result to the case where one of the elements of L is not necessarily an atom.

1. PRELIMINARIES

Most of the following definitions are well known. The reader is referred to Beltrametti and Cassinelli (1981) and Jauch (1973) for further details. A complete orthocomplemented lattice $(L, \leq, \wedge, \vee, \perp)$ is said to be *orthomodular* if, given $a \leq b$ in **L**, then $b = a \vee (b \wedge a^{\perp})$. A map $s: L \rightarrow [0, 1]$ is a *state* on L if $s(0) = 0$, $s(1) = 1$, and $s(\vee a_i) = \sum s(a_i)$ given $a_i \leq a_i^{\perp}$ for $i \neq j$. Here 1 and 0 also denote, respectively, the greatest and least elements of L. A set $\mathscr S$ of states is *full* whenever $s(a) \leq s(b)$ for all $s \in \mathcal{S}$ implies $a \leq b$. Moreover, a state s is *pure* if it cannot be expressed as a convex combination of other elements of \mathscr{S} . A pair (L, \mathscr{S}) where L is an orthomodular lattice and \mathscr{S} is a full set of states is generally known in the literature as a *quantum logic.*

Let $\mathscr{B}(\mathbb{R})$ denote, as usual, the Borel sets of \mathbb{R} . An *L-observable* (or observable for short when no confusion arises) is just an L-valued measure, that is, a map $\mathfrak{D}:\mathscr{B}(\mathbb{R})\to\mathbf{L}$ satisfying $\mathfrak{D}(\emptyset) = 0$, $\mathfrak{D}(\mathbb{R}) = 1$, and $\mathfrak{D}(\bigcup B_i) = 0$ $\sum \mathcal{D}(B_i)$ given $B_i \cap B_j = \emptyset$ when $i \neq j$.

Given an orthomodular lattice L, Román and Rumbos (1991) propose the use of a noncommutative "conjunction" in L, denoted by the amper-

¹Instituto de Matemáticas, Ciudad Universitaria, Mexico, D.F. 04510.

²Present address: Department of Mathematics, Texas A & M University, College Station, Texas 77843-3368.

sand & and defined by $a \& b = (a \vee b^{\perp}) \wedge b$ for any $a, b \in L$. Here one readily recognizes the Sasaki projection as the map $($) & b. It is well known that this map preserves arbitrary unions. It will always be assumed here that the lattice L is atomic (and hence atomistic) and has the so-called *covering property,* that is (in one of its equivalent formulations), if a, $p \in L$ so that p is an atom and $p \nleq a^{\perp}$, then $p \& a$ is an atom. These two properties are usually taken for granted when speaking about quantum logics.

In Román and Rumbos (1991) the commutativity gap between any two elements a, $b \in L$ is defined by $\Delta(a, b) = \sup_{s \in \mathcal{S}} |s(a \& b) - s(b \& a)|$. This definition can be extended to arbitrary L-observables as suggested in Maczynski (1981) and Rumbos (1993) as follows:

If \mathfrak{D} , \mathfrak{P} are two L-observables, then

$$
\Delta(\mathfrak{D}, \mathfrak{P}) \sup_{E, F \in B(R)} \Delta(\mathfrak{D}(E), \mathfrak{P}(F))
$$

In, Rumbos (1993) it was seen that whenever there exists a bijection between the atoms of L and the pure states of \mathcal{S} , one can define the concept of transition probability in the quantum logic (L, \mathcal{S}) in the following way:

If s_a and s_b are two pure states corresponding to the atoms a and b in L, the transition probability trp(s_a , s_b) between s_a and s_b is given by

$$
\text{trp}(s_a, s_b) = \begin{cases} 1 - \Delta^2(a, b) & \text{if } a \leq b^\perp \\ 0 & \text{if } a \leq b^\perp \end{cases}
$$

This definition was motivated from the case $\mathbf{L} = \mathscr{P}(\mathbf{H})$, where $\mathscr{P}(\mathbf{H})$ is the lattice of closed subspaces (or equivalently the lattice of projections) of the Hilbert space $(H, \langle \cdot, \cdot \rangle)$; here $\langle \cdot, \cdot \rangle$ is, as usual, the scalar product. If $\mathscr U$ denotes the set of unit vectors of H, a full set of (pure) states is given by

$$
\mathcal{S} = \{s_u : \mathcal{P}(\mathbf{H}) \to [0, 1] \mid s_u(p) = \langle p(u), u \rangle \; \forall \, p \in \mathbf{L}, u \in \mathcal{U} \}
$$

The transition probability between s_u and s_v is given in the usual way by $|\langle u, v \rangle|^2$. If p_u denotes the one-dimensional projection onto the space generated by $u \in \mathcal{U}$, then $p_u \leftrightarrow s_u$ is a one-to-one correspondence between the atoms of $\mathcal{P}(H)$ and the pure states of \mathcal{S} . The following proposition was proved in Román and Rumbos (1991).

Proposition 1.1. Given $u, v \in \mathcal{U}, \langle u, v \rangle \neq 0$, then

$$
\Delta(p_u, p_v) = (1 - |\langle u, v \rangle|^2)^{1/2}
$$

Noneommutativity of Quantum Observables 1325

It is clear from here how to obtain the more general definition of transition probability as given above.

It is well known that the spectral theorem yields a bijection between $\mathscr{P}(H)$ -observables and self-adjoint operators on H. The eigenvalues of the operator are the possible values of the observable. When $\mathbf{L} = \mathscr{P}(\mathbf{H})$ and \mathfrak{D} , \mathcal{P} are observables with pure point spectra and nondegenerate eigenvalues, it is straightforward from the definition of $\Delta(\mathfrak{D}, \mathfrak{B})$ and Proposition 1 that if $\{\varphi_i\}$ and $\{\psi_i\}$ are, respectively, the discrete sets of eigenstates of $\mathfrak D$ and \mathfrak{B} , then

$$
\Delta(\mathfrak{D}, \mathfrak{P}) = \sup_{i,j} (1 - |\langle \varphi_i, \psi_j \rangle|^2)^{1/2}
$$

Now, what if one of the eigenvalues of $\mathfrak D$ was degenerate and possessed an eigenspace of dimension different from 1? Or what if $\mathfrak D$ has a continuous spectrum? Would a similar result hold? We shall presently see that this is indeed the case.

2. THE MAIN RESULT

In this section $\mathbf{L} = \mathcal{P}(\mathbf{H})$, \mathcal{S} is the usual full set of (pure) states, and $\mathscr U$ is the set of unit vectors of **H** as described before. The properties stated in the next lemma are well known, but for the sake of completness, proofs are included.

Lemma 2.1. Let V be any closed subspace of H and $u \in \mathcal{U}$, $u \notin V^{\perp}$. If p_V and p_u denote, respectively, the projections onto V and the onedimensional subspace generated by u , the following hold:

(i) $p_v \& p_v = p_u$

(ii) $p_u \& p_v = p_w$, where $w = p_v(u)/||p_v(u)||$

Proof. Part (i) is clear, since $0 \neq p_v \& p_u \leq p_u$ and p_u is an atom. For part (ii), observe that $p_w \leq p_v$ and $p_w \leq p_u \vee p_v^{\perp}$; from here we have that $0 \neq p_w \leq (p_u \vee p_v^{\perp}) \wedge p_v^{\perp} = p_u \& p_v$, but from the covering property $p_u \& p_v$ is an atom, so we must have $p_u \& p_v = p_w$ as stated.

The next corollary is an immediate consequence of the above and the fact that () & p preserves joins for any $p \in \mathcal{P}(\mathbf{H})$; it gives us an explicit description of the ampersand.

Corollary 2.2. Let V and W be closed subspaces of H , and let $\{v_1, v_2, ...\}$ be an orthonormal basis (not necessarily finite) for V. The following identity then holds:

$$
p_V \& p_W = \bigvee p_{w_i}, \qquad \text{where} \quad w_i = \frac{p_W(v_i)}{\|p_W(v_i)\|}
$$

We are now ready to state the main result.

Theorem 2.3. Let V be a closed subspace of H and $w \in \mathcal{U}$, $w \notin V^{\perp}$. Then

$$
\Delta(p_w, p_V) = (1 - ||p_V(w)||^2)^{1/2}
$$

Proof. First observe that

$$
\Delta(p_w, p_V) = \sup_{u \in U} |\langle (p_V \& p_w - p_w \& p_V) u, u \rangle| = ||p_V \& p_w - p_w \& p_V||
$$

where by abuse of notation $\|\cdot\|$ will also denote the operator norm.

If $w \in V$, then $||p_V(w)|| = 1$ and $\Delta(p_w, p_V) = ||p_w - p_w|| = 0$, so the result clearly holds. Suppose now that $w \notin V$. From the definition of Δ and the lemma we have $\Delta(p_w, p_v) = ||p_v \& p_w - p_w \& p_v|| = ||p_w - p_w||$, where

$$
\psi = \frac{p_V(w)}{\|p_V(w)\|}
$$

so that

$$
\Delta^{2}(p_{w}, p_{V}) = ||p_{w} - p_{\psi}||^{2}
$$

= $||(p_{w} - p_{\psi})(p_{w} - p_{\psi})||$
= $||p_{w} + p_{\psi} - p_{w}p_{\psi} - p_{\psi}p_{w}||$
= $\sup_{u \in U} |\langle (p_{w} + p_{\psi} - p_{w}p_{\psi} - p_{\psi}p_{w}) u, u \rangle|$ (1)

Given any $u \in \mathcal{U}$ and noting that

$$
\langle w, \psi \rangle = \langle w, \frac{p_V(w)}{\| p_V(w) \|} \rangle = \| p_V(w) \|
$$

one has

Noncommutativity of Quantum Observables 1327

$$
\langle (p_w + p_\psi - p_w p_\psi - p_\psi p_w) u, u \rangle
$$

= $\langle w, u \rangle w + \langle \psi, u \rangle \psi - \langle p_V(w), u \rangle w - \langle w - \langle w, u \rangle p_V(w), u \rangle$
= $\langle \langle w, u \rangle [w - p_V(w)] - \langle p_V(w), u \rangle (w - \frac{p_V(w)}{\| p_V(w) \|^2}), u \rangle$
= $\langle (w - p_V(w), u) [w - p_V(w)]$
+ $[1 - \| p_V(w) \|^2] \langle p_V(w), u \rangle \frac{p_V(w)}{\| p_V(w) \|^2}, u \rangle$
= $|\langle w - p_V(w), u \rangle|^2 + (1 - \| p_V(w) \|^2) \left| \langle \frac{p_V(w)}{\| p_V(w) \|}, u \rangle \right|^2$ (2)

Using the fact that $\lceil w - p_V(w) \rceil / \|w - p_V(w)\|$ and $p_V(w) / \|p_V(w)\|$ are part of an orthonormal basis, when u is expressed in terms of this basis we obtain

$$
1 = \|u\| \geq \left| \left\langle \frac{w - p_V(w)}{\|w - p_V(w)\|}, u \right\rangle \right|^2 + \left| \left\langle \frac{p_V(w)}{\|p_V(w)\|}, u \right\rangle \right|^2
$$

Observing that $||w - p_V(w)||^2 = 1 - ||p_V(w)||^2$, we combine the above with expression (2) in order to get

$$
|\langle w - p_V(w), u \rangle|^2 + [1 - ||p_V(w)||^2] \left| \left\langle \frac{P_V(w)}{||p_V(w)||}, u \right\rangle \right|^2 \leq 1 - ||p_V(w)||^2
$$

Since this holds for any $u \in \mathcal{U}$, expression (1) is also bounded above by $1 - ||p_V(w)||^2$. Noting that for $u = w$ this upper bound is actually attained, we conclude that $||p_v \& p_w - p_w \& p_v||^2 = 1 - ||p_v(w)||^2$ and hence $\Delta(p_w, p_v) =$ $1 - ||p_V(w)||^2$ ^{1/2}, which is the desired result. \blacksquare

Corollary 2.4. Let $\mathcal{S} = \{s_u : \mathcal{P}(\mathbf{H}) \to [0, 1] | u \in \mathcal{U} \}$ be the usual full set of states on $\mathcal{P}(\mathbf{H})$. For any $p \in \mathcal{P}(\mathbf{H})$ we have that

$$
s_u(p) = \begin{cases} 1 - \Delta^2(p_u, p) & \text{if } p_u \nleq p^\perp \\ 0 & \text{if } p_u \leq p^\perp \end{cases}
$$

Proof. Immediate, since $s_u(p) = ||p(u)||^2$. \blacksquare

Corollary 2.5. Let $\mathfrak D$ and $\mathfrak P$ be two $\mathfrak P(H)$ -observables. If $\mathfrak D$ has a pure point spectrum $\{\lambda_i\}$ consisting of nondegenerate eigenvalues and $\{v_i\}$

is the corresponding set of eigenvectors, the measure of noncommutativity between $\mathcal D$ and $\mathfrak P$ is given by

$$
\Delta(\mathfrak{D}, \mathfrak{P}) = \sup_{\substack{E \in B(R) \\ i \in \mathbb{N}}} \left[1 - s_{V_i}(\mathfrak{P}(E))\right]^{1/2}
$$

Proof. Immediate from the definition of $\Delta(\mathfrak{D}, \mathfrak{B})$ and Corollary 2.4.

To conclude, we just point out that the proof of Theorem 2.3 avoids the use of matrices, as in Maczynski (1981) and Román and Rumbos (1991); this has the advantage that the closed subspace V can be taken to be infinite dimensional.

REFERENCES

- Beltrametti, E. G., and Cassinelli, G. (1981). *The Logic of Quantum Mechanics*, Addison-Wesley, Reading, Massachusetts.
- Jauch, J. M. (1973). *Foundations of Quantum Mechanics,* Addison-Wesley, Reading, Massachusetts.
- Maczynski, M. (1981). Commutativity and generalized transition probability in quantum logic, *Current lssues in Quantum Logic,* E. G. Beltrametti and Bas C. van Fraassen, eds., Plenum Press, New York.

Roman, L., and Rumbos, B. (1991). *Foundations of Physics,* 21, 727-734.

Rumbos, B. (1993). *International Journal of Theoretical Physics,* 32, 927-932.